Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Am J Physiol Cell Physiol ; 326(3): C829-C842, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223928

RESUMO

Loss of function mutations in the SLC26A3 gene cause chloride-losing diarrhea in mice and humans. Although systemic adaptive changes have been documented in these patients and in the corresponding knockout mice, how colonic enterocytes adapt to loss of this highly expressed and highly regulated luminal membrane anion exchanger remains unclear. To address this question, SLC26A3 was deleted in the self-differentiating Caco2BBe colonic cell line by the CRISPR/Cas9 technique. We selected a clone with loss of SLC26A3 protein expression and morphological features indistinguishable from those of the native cell line. Neither growth curves nor development of transepithelial electrical resistance (TEER) differed between wild-type (WT) and SLC26A3 knockout (KO) cells. Real-time qPCR and Western analysis in SLC26A3-KO cells revealed an increase in AE2 expression without significant change in NHE3 expression or localization. Steady-state pHi and apical and basolateral Cl-/HCO3- exchange activities were assessed fluorometrically in a dual perfusion chamber with independent perfusion of luminal and serosal baths. Apical Cl-/HCO3- exchange rates were strongly reduced in SLC26A3-KO cells, accompanied by a surface pH more acidic than that of WT cells. Steady-state pHi was not significantly different from that of WT cells, but basolateral Cl-/HCO3- exchange rates were higher in SLC26A3-KO than in WT cells. The data show that CRISPR/Cas9-mediated SLC26A3 deletion strongly reduced apical Cl-/HCO3- exchange rate and apical surface pH, but sustained a normal steady-state pHi due to increased expression and function of basolateral AE2. The low apical surface pH resulted in functional inhibition of NHE-mediated fluid absorption despite normal expression of NHE3 polypeptide.NEW & NOTEWORTHY SLC26A3 gene mutations cause chloride-losing diarrhea. To understand how colonic enterocytes adapt, SLC26A3 was deleted in Caco2BBe cells using CRISPR/Cas9. In comparison to the wild-type cells, SLC26A3 knockout cells showed similar growth and transepithelial resistance but substantially reduced apical Cl-/HCO3- exchange rates, and an acidic surface pH. Steady-state intracellular pH was comparable between the WT and KO cells due to increased basolateral AE2 expression and function.


Assuntos
Cloretos , Diarreia , Humanos , Animais , Camundongos , Trocador 3 de Sódio-Hidrogênio/genética , Ânions , Enterócitos , Concentração de Íons de Hidrogênio , Transportadores de Sulfato/genética , Antiportadores de Cloreto-Bicarbonato/genética
2.
Nat Commun ; 15(1): 759, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272905

RESUMO

Anion exchanger 2 (AE2) is an electroneutral Na+-independent Cl-/HCO3- exchanger belongs to the SLC4 transporter family. The widely expressed AE2 participates in a variety of physiological processes, including transepithelial acid-base secretion and osteoclastogenesis. Both the transmembrane domains (TMDs) and the N-terminal cytoplasmic domain (NTD) are involved in regulation of AE2 activity. However, the regulatory mechanism remains unclear. Here, we report a 3.2 Å cryo-EM structure of the AE2 TMDs in complex with PIP2 and a 3.3 Å full-length mutant AE2 structure in the resting state without PIP2. We demonstrate that PIP2 at the TMD dimer interface is involved in the substrate exchange process. Mutation in the PIP2 binding site leads to the displacement of TM7 and further stabilizes the interaction between the TMD and the NTD. Reduced substrate transport activity and conformation similar to AE2 in acidic pH indicating the central contribution of PIP2 to the function of AE2.


Assuntos
Antiporters , Lipídeos , Humanos , Antiportadores de Cloreto-Bicarbonato/genética , Antiporters/genética , Proteínas SLC4A , Mutação , Proteínas de Transporte de Ânions/metabolismo , Concentração de Íons de Hidrogênio
3.
Brain ; 146(11): 4547-4561, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37459438

RESUMO

SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.


Assuntos
Convulsões , Simportadores de Sódio-Bicarbonato , Criança , Camundongos , Humanos , Animais , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Convulsões/genética , Mutação/genética , Neurotransmissores , Ácido gama-Aminobutírico/genética , Mamíferos/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo
4.
Elife ; 122023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351578

RESUMO

Members of the SLC26 family constitute a conserved class of anion transport proteins, which encompasses uncoupled transporters with channel-like properties, coupled exchangers and motor proteins. Among the 10 functional paralogs in humans, several participate in the secretion of bicarbonate in exchange with chloride and thus play an important role in maintaining pH homeostasis. Previously, we have elucidated the structure of murine SLC26A9 and defined its function as an uncoupled chloride transporter (Walter et al., 2019). Here we have determined the structure of the closely related human transporter SLC26A6 and characterized it as a coupled exchanger of chloride with bicarbonate and presumably also oxalate. The structure defines an inward-facing conformation of the protein that generally resembles known structures of SLC26A9. The altered anion selectivity between both paralogs is a consequence of a remodeled ion binding site located in the center of a mobile unit of the membrane-inserted domain, which also accounts for differences in the coupling mechanism.


Assuntos
Antiporters , Bicarbonatos , Humanos , Animais , Camundongos , Antiporters/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Sulfato/genética
5.
Am J Physiol Cell Physiol ; 324(6): C1263-C1273, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154494

RESUMO

In polarized intestinal epithelial cells, downregulated in adenoma (DRA) is an apical Cl-/[Formula: see text] exchanger that is part of neutral NaCl absorption under baseline conditions, but in cyclic adenosine monophosphate (cAMP)-driven diarrheas, it is stimulated and contributes to increased anion secretion. To further understand the regulation of DRA in conditions mimicking some diarrheal diseases, Caco-2/BBE cells were exposed to forskolin (FSK) and adenosine 5'-triphosphate (ATP). FSK and ATP stimulated DRA in a concentration-dependent manner, with ATP acting via P2Y1 receptors. FSK at 1 µM and ATP at 0.25 µM had minimal to no effect on DRA given individually; however, together, they stimulated DRA to levels seen with maximum concentrations of FSK and ATP alone. In Caco-2/BBE cells expressing the Ca2+ indicator GCaMP6s, ATP increased intracellular Ca2+ (Ca2+i) in a concentration-dependent manner, whereas FSK (1 µM), which by itself did not significantly alter Ca2+i, followed by 0.25 µM ATP produced a large increase in Ca2+ that was approximately equal to the elevation caused by 1 µM ATP. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) pretreatment prevented the ATP and FSK/ATP synergistically increased the DRA activity and the increase in Ca2+i caused by FSK/ATP. FSK/ATP synergistic stimulation of DRA was similarly observed in human colonoids. In Caco-2/BBE cells, subthreshold concentrations of FSK (cAMP) and ATP (Ca2+) synergistically increased Ca2+i and stimulated DRA activity with both being blocked by BAPTA-AM pretreatment. Diarrheal diseases, such as bile acid diarrhea, in which both cAMP and Ca2+ are elevated, are likely to be associated with stimulated DRA activity contributing to increased anion secretion, whereas separation of DRA from Na+/H+ exchanger isoform-3 (NHE3) contributes to reduced NaCl absorption.NEW & NOTEWORTHY The BB Cl-/[Formula: see text] exchanger DRA takes part in both neutral NaCl absorption and stimulated anion secretion. Using intestinal cell line, Caco-2/BBE high concentrations of cAMP and Ca2+ individually stimulated DRA activity, whereas low concentrations, which had no/minimal effect, synergistically stimulated DRA activity that required a synergistic increase in intracellular Ca2+. This study increases understanding of diarrheal diseases, such as bile salt diarrhea, in which both cAMP and elevated Ca2+ are involved.


Assuntos
Células Epiteliais , Cloreto de Sódio , Humanos , Células CACO-2 , Células Epiteliais/metabolismo , Ânions/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Diarreia/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo
6.
Int J Neuropsychopharmacol ; 26(6): 396-411, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37235790

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a type of emotional dysfunction, and its pathogenesis has not been fully elucidated. Specifically, the key molecules in depression-related brain regions involved in this disease and their contributions to this disease are currently unclear. METHODS: GSE53987 and GSE54568 were selected from the Gene Expression Omnibus database. The data were standardized to identify the common differentially expressed genes (DEGs) in the cortex of MDD patients in the 2 datasets. The DEGs were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The STRING database was used to build protein-protein interaction networks, and the cytoHubba plugin was used to identify hub genes. Furthermore, we selected another blood transcriptome dataset that included 161 MDD and 169 control samples to explore the changes in the screened hub genes. Mice were subjected to 4 weeks of chronic unpredictable mild stress to establish an animal model of depression, and the expression of these hub genes in tissues of the prefrontal cortex was then detected by quantitative real time polymerase chain reaction (qRT-PCR). We subsequently predicted the possible posttranscriptional regulatory networks and traditional Chinese medicine according to the hub genes using a few online databases. RESULTS: The analysis identified 147 upregulated genes and 402 downregulated genes were identified in the cortex of MDD patients compared with that of the controls. Enrichment analyses revealed that DEGs were predominantly enriched in synapse-related cell functions, linoleic acid metabolism, and other pathways. Protein-protein interaction analysis identified 20 hub genes based on the total score. The changes in KDM6B, CUX2, NAAA, PHKB, NFYA, GTF2H1, CRK, CCNG2, ACER3, and SLC4A2 in the peripheral blood of MDD patients were consistent with those in the brain. Furthermore, the prefrontal cortex of mice with depressive-like behaviors showed significantly increased Kdm6b, Aridb1, Scaf11, and Thoc2 expression and decreased Ccng2 expression compared with that of normal mice, which was consistent with the results found for the human brain. Potential therapeutic candidates, such as citron, fructus citri, leaves of Panax Notoginseng, sanchi flower, pseudoginseng, and dan-shen root, were selected via traditional Chinese medicine screening. CONCLUSIONS: This study identified several novel hub genes in specific brain regions involved in the pathogenesis of MDD, which may not only deepen our understanding of depression but may also provide new ideas for its diagnosis and treatment.


Assuntos
Transtorno Depressivo Maior , Humanos , Animais , Camundongos , Transtorno Depressivo Maior/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Mapas de Interação de Proteínas , Encéfalo , Biologia Computacional/métodos , Fator de Transcrição TFIIH/genética , Histona Desmetilases com o Domínio Jumonji/genética , Antiportadores de Cloreto-Bicarbonato/genética
7.
Genes (Basel) ; 14(3)2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36980855

RESUMO

The Luxi gamecock developed very unique morphological and behavioral features under the special artificial selection of the most famous Chinese gamecocks. There are very few research studies on the genetics and selection of the Luxi gamecock. We used six methods (Fst, Tajima's D, hapFLK, iHS, XP-EHH, and Runs of homozygosity) to detect selective sweeps in whole-genome resequencing data of 19 Luxi gamecocks compared to other Chinese indigenous chickens. Eleven genes that were highly related to nervous system development (CDH18, SLITRK1, SLITRK6, NDST3, ATP23, LRIG3, IL1RAPL1, GADL1, C5orf22, UGT8, WISP1, and WNT9A) appeared in at least four methods and were regarded as the most significant genes under selection. Differentially expressed gene (DEG) analysis based on the RNA sequencing data of the cerebral cortex and middle brain between six Luxi gamecocks, Tibetan chickens, and white leghorns found that most differentially expressed genes were enriched in pathways with nervous system functions. Genes associated with aggressiveness-related neurotransmitters (SLC4A2, DRD1, DRD2, ADRA2A, and ADRA2B) showed differential expression rates in Luxi gamecocks as well. Combined results showed that most genes in selective sweep regions were also differentially expressed in Luxi gamecocks including the most significant genes (SLITRK6, IL1RAPL1, GADL1, WISP1, and LRIG3). This study provides more insight into molecular mechanisms of the aggressiveness of gamecocks and aims to promote further studies on animal and human aggression.


Assuntos
Carboxiliases , Galinhas , Animais , Humanos , Galinhas/genética , Sequência de Bases , Análise de Sequência de DNA , Análise de Sequência de RNA , Sistema Nervoso , Proteínas de Membrana/genética , Antiportadores de Cloreto-Bicarbonato/genética , Carboxiliases/genética
8.
Am J Physiol Renal Physiol ; 324(3): F267-F273, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603001

RESUMO

The diverse functions of each nephron segment rely on the coordinated action of specialized cell populations that are uniquely defined by their transcriptional profile. In the collecting duct, there are two critical and distinct cell populations: principal cells and intercalated cells. Principal cells play key roles in the regulation of water, Na+, and K+, whereas intercalated cells are best known for their role in acid-base homeostasis. Currently, there are no in vitro systems that recapitulate the heterogeneity of the collecting ducts, which limits high-throughput and replicate investigations of genetic and physiological phenomena. Here, we demonstrated that the transcription factor Foxi1 is sufficient to alter the transcriptional identity of M-1 cells, a murine cortical collecting duct cell line. Specifically, overexpression of Foxi1 induces the expression of intercalated cell transcripts including Gpr116, Atp6v1b1, Atp6v1g3, Atp6v0d2, Slc4a9, and Slc26a4. These data indicate that overexpression of Foxi1 differentiates M-1 cells toward a non-A, non-B type intercalated cell phenotype and may provide a novel in vitro tool to study transcriptional regulation and physiological function of the renal collecting duct.NEW & NOTEWORTHY Transfection of M-1 cells with the transcription factor Foxi1 generates cells that express V-ATPase and Gpr116 as well as other genes associated with renal intercalated cells. This straightforward and novel in vitro system could be used to study processes including transcriptional regulation and cell specification and differentiation in renal intercalated cells.


Assuntos
Fatores de Transcrição Forkhead , Receptores Acoplados a Proteínas G , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Diferenciação Celular , Antiportadores de Cloreto-Bicarbonato/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Rim/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
9.
Bone ; 167: 116603, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36343920

RESUMO

SLC4A2 belongs to the Na+-independent solute carrier family 4 (SLC4) of anion exchangers, which regulate electroneutral exchange of Cl- for HCO3- and mediate intra- and extra-cellular pH, chloride concentration and cell volume. Slc4a2 also participates in gastric acid secretion, spermatogenesis and osteoclastogenesis. During osteoclast differentiation, Slc4a2 is exclusively expressed at the contra-lacunar membrane and is up-regulated with osteoclast maturation. Bi-allelic Slc4a2 loss-of-function mutations have been known to cause osteopetrosis in mice and cattle, but not in human. Recently, we have identified bi-allelic pathogenic variants in SLC4A2 in a patient affected by osteopetrosis with severe renal insufficiency, suggesting SLC4A2 deficiency causes a new type of autosomal recessive osteopetrosis (osteopetrosis, Ikegawa type). In this article, we review the advances in exploring the multiple functions of SLC4A2 with emphasis on its roles in osteoclast. Our review would contribute to understanding of the phenotypic spectrum and the pathomechanism of SLC4A2-associated osteopetrosis.


Assuntos
Osteoclastos , Osteopetrose , Animais , Bovinos , Humanos , Masculino , Camundongos , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Mutação , Osteoclastos/metabolismo , Osteogênese , Osteopetrose/patologia
10.
J Pediatr Gastroenterol Nutr ; 75(6): 692-694, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36084219

RESUMO

Gallstones are increasingly frequent in children. In this candidate gene study, we genotyped 5 gene variants ( ANO1 , SPTLC3 , TMEM147 , TNRC6B , rs12532734) from a recent gallstone genome-wide association study (GWAS) in a cohort of 214 children with gallstones and 172 gallstone-free adult controls. In total, 138 genotyped children presented with symptomatic gallstone disease, 47 underwent cholecystectomy, and 126 received ursodeoxycholic acid (UDCA) as therapy for stones. Among 5 tested variants, the rs12532734 polymorphism modulated the gallstone risk in the studied cohort. Its genotype distribution significantly ( P = 0.025) departed from the Hardy-Weinberg equilibrium among cases, and the common allele was associated with increased odds of developing gallstones at young age (OR = 1.69, P = 0.014). SLC26A3 is the nearest gene to rs12532734 and is involved in the transepithelial bicarbonate and chloride transport. The association of rs12532734 with pediatric gallstones is a novel finding warranting further investigations also with regard to biliary bicarbonate flux and bile composition.


Assuntos
Antiportadores de Cloreto-Bicarbonato , Cálculos Biliares , Estudo de Associação Genômica Ampla , Transportadores de Sulfato , Adulto , Criança , Humanos , Bicarbonatos , Colecistectomia , Cálculos Biliares/genética , Cálculos Biliares/cirurgia , Polimorfismo Genético , Proteínas de Ligação a RNA/genética , Ácido Ursodesoxicólico , Antiportadores de Cloreto-Bicarbonato/genética , Transportadores de Sulfato/genética
11.
Hepatol Commun ; 6(11): 3120-3131, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098472

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is prevalent worldwide. NAFLD is associated with elevated serum triglycerides (TG), low-density lipoprotein cholesterol (LDL), and reduced high-density lipoprotein cholesterol (HDL). Both NAFLD and blood lipid levels are genetically influenced and may share a common genetic etiology. We used genome-wide association studies (GWAS)-ranked genes and gene-set enrichment analysis to identify pathways that affect serum lipids and NAFLD. We identified credible genes in these pathways and characterized missense variants in these for effects on serum traits. We used MAGENTA to identify 58 enriched pathways from publicly available TG, LDL, and HDL GWAS (n = 99,000). Three of these pathways were also enriched for associations with European-ancestry NAFLD GWAS (n = 7176). One pathway, farnesoid X receptor (FXR)/retinoid X receptor (RXR) activation, was replicated for association in an African-ancestry NAFLD GWAS (n = 3214) and plays a role in serum lipids and NAFLD. Credible genes (proteins) in FXR/RXR activation include those associated with cholesterol/bile/bilirubin transport/absorption (ABCC2 (MRP2) [ATP binding cassette subfamily C member (multidrug resistance-associated protein 2)], ABCG5, ABCG8 [ATP-binding cassette (ABC) transporters G5 and G8], APOB (APOB) [apolipoprotein B], FABP6 (ILBP) [fatty acid binding protein 6 (ileal lipid-binding protein)], MTTP (MTP) [microsomal triglyceride transfer protein], SLC4A2 (AE2) [solute carrier family 4 member 2 (anion exchange protein 2)]), nuclear hormone-mediated control of metabolism (NR0B2 (SHP) [nuclear receptor subfamily 0 group B member 2 (small heterodimer partner)], NR1H4 (FXR) [nuclear receptor subfamily 1 group H member 4 (FXR)], PPARA (PPAR) [peroxisome proliferator activated receptor alpha], FOXO1 (FOXO1A) [forkhead box O1]), or other pathways (FETUB (FETUB) [fetuin B]). Missense variants in ABCC2 (MRP2), ABCG5 (ABCG5), ABCG8 (ABCG8), APOB (APOB), MTTP (MTP), NR0B2 (SHP), NR1H4 (FXR), and PPARA (PPAR) that associate with serum LDL levels also associate with serum liver function tests in UK Biobank. Conclusion: Genetic variants in NR1H4 (FXR) that protect against liver steatosis increase serum LDL cholesterol while variants in other members of the family have congruent effects on these traits. Human genetic pathway enrichment analysis can help guide therapeutic development by identifying effective targets for NAFLD/serum lipid manipulation while minimizing side effects. In addition, missense variants could be used in companion diagnostics to determine their influence on drug effectiveness.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Corantes de Rosanilina , Humanos , Trifosfato de Adenosina , Apolipoproteínas/genética , Apolipoproteínas B/genética , Transportadores de Cassetes de Ligação de ATP/genética , Bilirrubina/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Colesterol/genética , LDL-Colesterol/genética , Proteínas de Ligação a Ácido Graxo/genética , Fetuína-B/genética , Estudo de Associação Genômica Ampla , Hormônios , Lipídeos , Lipoproteínas HDL/genética , Hepatopatia Gordurosa não Alcoólica/genética , PPAR alfa/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores X de Retinoides/genética , Triglicerídeos , Proteínas de Ligação a RNA/metabolismo
12.
Sci Rep ; 12(1): 11259, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788623

RESUMO

SLC26A4 is a known iodide transporter, and is localized at the apical membrane of thyrocytes. Previously, we reported that SLC26A7 is also involved in iodide transport and that Slc26a7 is a novel causative gene for congenital hypothyroidism. However, its detailed role in vivo remains to be elucidated. We generated mice that were deficient in Slc26a7 and Slc26a4 to delineate differences and associations in their roles in iodide transport. Slc26a7-/- mice showed goitrous congenital hypothyroidism and mild growth failure on a normal diet. Slc26a7-/- mice with a low iodine environment showed marked growth failure. In contrast, Slc26a4-/- mice showed no growth failure and hypothyroidism in the same low iodine environment. Double-deficient mice showed more severe growth failure than Slc26a7-/- mice. RNA-seq analysis revealed that the number of differentially expressed genes (DEGs) in Slc26a7-/- mice was significantly higher than that in Slc26a4-/- mice. These indicate that SLC26A7 is more strongly involved in iodide transport and the maintenance of thyroid function than SLC26A4.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Hipotireoidismo Congênito , Iodo , Transportadores de Sulfato/metabolismo , Animais , Antiportadores de Cloreto-Bicarbonato/genética , Hipotireoidismo Congênito/genética , Iodetos , Iodo/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Transportadores de Sulfato/genética
13.
J Cyst Fibros ; 21(3): 537-543, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34922851

RESUMO

BACKGROUND: In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion precipitates the accumulation of viscous mucus in the lumen of respiratory and gastrointestinal epithelial tissues. We investigated whether the combination of elexacaftor (ELX), ivacaftor (IVA) and tezacaftor (TEZ), apart from its well-documented effect on chloride transport, also restores Phe508del-CFTR-mediated bicarbonate transport. METHODS: Epithelial monolayers were cultured from intestinal and biliary (cholangiocyte) organoids of homozygous Phe508del-CFTR patients and controls. Transcriptome sequencing was performed, and bicarbonate and chloride transport were assessed in the presence or absence of ELX/IVA/TEZ, using the intestinal current measurement technique. RESULTS: ELX/IVA/TEZ markedly enhanced bicarbonate and chloride transport across intestinal epithelium. In biliary epithelium, it failed to enhance CFTR-mediated bicarbonate transport but effectively rescued CFTR-mediated chloride transport, known to be requisite for bicarbonate secretion through the chloride-bicarbonate exchanger AE2 (SLC4A2), which was highly expressed by cholangiocytes. Biliary but not intestinal epithelial cells expressed an alternative anion channel, anoctamin-1/TMEM16A (ANO1), and secreted bicarbonate and chloride upon purinergic receptor stimulation. CONCLUSIONS: ELX/IVA/TEZ has the potential to restore both chloride and bicarbonate secretion across CF intestinal and biliary epithelia and may counter luminal hyper-acidification in these tissues.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Aminofenóis/farmacologia , Benzodioxóis , Bicarbonatos , Agonistas dos Canais de Cloreto/farmacologia , Antiportadores de Cloreto-Bicarbonato/genética , Cloretos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Células Epiteliais , Humanos , Indóis , Organoides , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
14.
J Bone Miner Res ; 37(2): 226-235, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668226

RESUMO

Osteopetrosis is a group of rare inherited skeletal disorders characterized by a marked increase in bone density due to deficient bone resorption. Pathogenic variants in several genes involved in osteoclast differentiation and/or function have been reported to cause osteopetrosis. Solute carrier family 4 member 2 (SLC4A2, encoding anion exchanger 2) plays an important role in osteoclast differentiation and function by exchange of Cl- with HCO3- . Biallelic Slc4a2 loss-of-function mutations in mice and cattle lead to osteopetrosis with osteoclast deficiency; however, pathogenic SLC4A2 variants in humans have not been reported. In this study, we describe a patient with autosomal recessive osteopetrosis due to biallelic pathogenic variants in SLC4A2. We identified novel compound heterozygous variants in SLC4A2 (NM_003040.4: c.556G>A [p.A186T] and c.1658T>C [p.V553A]) by exome sequencing. The measurement of intracellular Cl- showed that the variants decrease the anion exchange activity of SLC4A2. The impact of the variants on osteoclast differentiation was assessed by a gene knockout-rescue system using a mouse macrophage cell line, RAW 264.7. The Slc4a2-knockout cells show impaired osteoclastogenesis, which was rescued by the wild-type SLC4A2, but not by the mutant SLC4A2s. Immunofluorescence and pit assay revealed that the mutant SLC4A2s leads to abnormal podosome belt formation with impaired bone absorption. This is the first report on an individual affected by SLC4A2-associated osteopetrosis (osteopetrosis, Ikegawa type). With functional studies, we prove that the variants lead to SLC4A2 dysfunction, which altogether supports the importance of SLC4A2 in human osteoclast differentiation. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Osteopetrose , Animais , Reabsorção Óssea/patologia , Bovinos , Linhagem Celular , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Humanos , Mutação/genética , Osteoclastos/metabolismo , Osteopetrose/patologia
15.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G628-G638, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585968

RESUMO

Ae4 transporters are critical for Cl- uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl-/HCO3- exchanger activity in SMG acinar cells from Ae2-/- mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to ß-adrenergic receptor stimulation. Moreover, pretreatment with H89, an inhibitor of the cAMP-activated kinase (PKA), prevented the stimulation of Ae4 exchangers. We then expressed Ae4 in CHO-K1 cells and found that the Ae4-mediated activity was increased when Ae4 is coexpressed with the catalytic subunit of PKA (PKAc), which is constitutively active. Ae4 sequence analysis showed two potential PKA phosphorylation serine residues located at the intracellular NH2-terminal domain according to a homology model of Ae4. NH2-terminal domain Ser residues were mutated to alanine (S173A and S273A, respectively), where the Cl-/HCO3- exchanger activity displayed by the mutant S173A was not activated by PKA. Conversely, S273A mutant kept the PKA dependency. Together, we conclude that Ae4 is stimulated by PKA in SMG acinar cells by a mechanism that probably depends on the phosphorylation of S173.NEW & NOTEWORTHY We found that Ae4 exchanger activity in secretory salivary gland acinar cells is increased upon ß-adrenergic receptor stimulation. The activation of Ae4 was prevented by H89, a nonselective PKA inhibitor. Protein sequence analysis revealed two residues (S173 and S273) that are potential targets of cAMP-dependent protein kinase (PKA). Experiments in CHO-K1 cells expressing S173A and S273A mutants showed that S173A, but not S273A, is not activated by PKA.


Assuntos
Células Acinares/enzimologia , Antiportadores de Cloreto-Bicarbonato/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Glândulas Salivares/enzimologia , Animais , Células CHO , Antiportadores de Cloreto-Bicarbonato/química , Antiportadores de Cloreto-Bicarbonato/genética , Cricetulus , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Glândulas Salivares/citologia , Relação Estrutura-Atividade
16.
Am J Physiol Cell Physiol ; 321(5): C798-C811, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524930

RESUMO

Altered esophageal ion transport mechanisms play a key role in inflammatory and cancerous diseases of the esophagus, but epithelial ion processes have been less studied in the esophagus because of the lack of a suitable experimental model. In this study, we generated three-dimensional (3D) esophageal organoids (EOs) from two different mouse strains and characterized the ion transport processes of the EOs. EOs form a cell-filled structure with a diameter of 250-300 µm and were generated from epithelial stem cells as shown by FACS analysis. Using conventional PCR and immunostaining, the presence of Slc26a6 Cl-/HCO3- anion exchanger (AE), Na+/H+ exchanger (NHE), Na+/HCO3- cotransporter (NBC), cystic fibrosis transmembrane conductance regulator (CFTR), and anoctamin 1 Cl- channels was detected in EOs. Microfluorimetric techniques revealed high NHE, AE, and NBC activities, whereas that of CFTR was relatively low. In addition, inhibition of CFTR led to functional interactions between the major acid-base transporters and CFTR. We conclude that EOs provide a relevant and suitable model system for studying the ion transport mechanisms of esophageal epithelial cells, and they can be also used as preclinical tools to assess the effectiveness of novel therapeutic compounds in esophageal diseases associated with altered ion transport processes.


Assuntos
Células Epiteliais/metabolismo , Esôfago/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Organoides/metabolismo , Células-Tronco/metabolismo , Animais , Anoctamina-1/genética , Anoctamina-1/metabolismo , Antiporters/genética , Antiporters/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Esôfago/citologia , Feminino , Transporte de Íons , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Organoides/citologia , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
17.
Orphanet J Rare Dis ; 16(1): 383, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503561

RESUMO

BACKGROUND: Infants with neonatal-onset diarrhea present with intractable diarrhea in the first few weeks of life. A monogenic mutation is one of the disease etiologies and the use of next-generation sequencing (NGS) has made it possible to screen patients for their mutations. MAIN BODY: We retrospectively reviewed the clinical data of four children from unrelated families, who presented with neonatal-onset, chronic, watery, non-bloody diarrhea. After genetic whole-exome sequencing, novel mutations were identified in the EPCAM gene of two children. Congenital chloride diarrhea was diagnosed in one case, which was associated with an SLC26A3 mutation, in which the patient presented with watery diarrhea, malnutrition, and hypochloremic alkalosis. Patient 4 was diagnosed with microvillus inclusion disease and possessed novel compound heterozygous mutations in the MYO5B gene. A review of the genetic variants of SLC26A3 reported in East Asia revealed that c.269_270 dupAA (p.G91Kfs*3) is the most frequent SLC26A3 mutation in China, compared with c.2063-1 G > T in Japan and Korea. EPCAM and MYO5B genetic variants were only sporadically reported in East Asia. CONCLUSION: This study expands our knowledge of the clinical manifestations and molecular genetics of neonatal-onset watery diarrhea. Early diagnosis could be achieved by genomic analysis in those infants whose histology features are not typical. The discovery of four novel mutations in the EPCAM gene and two novel mutations in the MYO5B gene provides further etiological evidence for the association of genetic mutations with neonatal-onset diarrhea. To date, c.269_270 dupAA is the most frequent SLC26A3 mutation in China.


Assuntos
Antiportadores de Cloreto-Bicarbonato , Diarreia , Erros Inatos do Metabolismo , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Transportadores de Sulfato , Antiportadores de Cloreto-Bicarbonato/genética , Diarreia/genética , Ásia Oriental , Humanos , Recém-Nascido , Erros Inatos do Metabolismo/genética , Mutação/genética , Estudos Retrospectivos , Transportadores de Sulfato/genética
18.
Cell Mol Life Sci ; 78(17-18): 6283-6304, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34279699

RESUMO

Proper functioning of each secretory and endocytic compartment relies on its unique pH micro-environment that is known to be dictated by the rates of V-ATPase-mediated H+ pumping and its leakage back to the cytoplasm via an elusive "H+ leak" pathway. Here, we show that this proton leak across Golgi membranes is mediated by the AE2a (SLC4A2a)-mediated bicarbonate-chloride exchange, as it is strictly dependent on bicarbonate import (in exchange for chloride export) and the expression level of the Golgi-localized AE2a anion exchanger. In the acidic Golgi lumen, imported bicarbonate anions and protons then facilitate a common buffering reaction that yields carbon dioxide and water before their egress back to the cytoplasm via diffusion or water channels. The flattened morphology of the Golgi cisternae helps this process, as their high surface-volume ratio is optimal for water and gas exchange. Interestingly, this net acid efflux pathway is often upregulated in cancers and established cancer cell lines, and responsible for their markedly elevated Golgi resting pH and attenuated glycosylation potential. Accordingly, AE2 knockdown in SW-48 colorectal cancer cells was able to restore these two phenomena, and at the same time, reverse their invasive and anchorage-independent growth phenotype. These findings suggest a possibility to return malignant cells to a benign state by restoring Golgi resting pH.


Assuntos
Complexo de Golgi/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Chlorocebus aethiops , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regulação para Cima
19.
J Clin Lab Anal ; 35(7): e23862, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085718

RESUMO

BACKGROUND: The main symptoms of congenital chloride diarrhea (CCD) main symptoms are watery diarrhea, hypochloremia, and hypokalemic metabolic alkalosis. Silver-Russell syndrome (SRS) is a heterogeneous imprinting disorder characterized by severe intrauterine retardation, poor postnatal growth, and facial dysmorphism. METHODS: Parent-offspring trio whole-exome sequencing was used to identify the causal variants. Sequencing reads were mapped to the reference of human genome version hg19. Sanger sequencing was performed as a confirmatory experiment. RESULTS: The proband was a patient with SRS caused by maternal uniparental disomy 7. The CCD of the proband was caused by homozygous variant c.1515-1 (IVS13) G>A; both mutated alleles were inherited from her mother. CONCLUSION: We report the first clinical case of CCD and SRS occurring together. Patients with milder phenotypes may be difficult to diagnose in early stage, but close monitoring of potential complications is important for identification.


Assuntos
Cromossomos Humanos Par 7/genética , Diarreia/congênito , Erros Inatos do Metabolismo/genética , Síndrome de Silver-Russell/genética , Dissomia Uniparental/genética , Sequência de Bases , Antiportadores de Cloreto-Bicarbonato/genética , Diarreia/diagnóstico , Diarreia/genética , Feminino , Humanos , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/diagnóstico , Linhagem , Síndrome de Silver-Russell/diagnóstico , Transportadores de Sulfato/genética
20.
J Crohns Colitis ; 15(10): 1679-1685, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33770165

RESUMO

BACKGROUND: Congenital chloride diarrhoea [CLD] is a rare autosomal recessive disease caused by mutations in the solute family carrier 26 member 3 [SLC26A3] gene. Patients suffer from life-long watery diarrhoea and chloride loss. Inflammatory bowel disease [IBD] has been reported in individual patients with CLD and in scl26a3-deficient mice. METHODS: We performed an international multicentre analysis to build a CLD cohort and to identify cases with IBD. We assessed clinical and genetic characteristics of subjects and studied the cumulative incidence of CLD-associated IBD. RESULTS: In a cohort of 72 patients with CLD caused by 17 different SLC26A3 mutations, we identified 12 patients [17%] diagnosed with IBD. Nine patients had Crohn's disease, two ulcerative colitis and one IBD-unclassified [IBD-U]. The prevalence of IBD in our cohort of CLD was higher than the highest prevalence of IBD in Europe [p < 0.0001]. The age of onset was variable [13.5 years, interquartile range: 8.5-23.5 years]. Patients with CLD and IBD had lower z-score for height than those without IBD. Four of 12 patients had required surgery [ileostomy formation n = 2, ileocaecal resection due to ileocaecal valve stenosis n = 1 and colectomy due to stage II transverse colon cancer n = 1]. At last follow-up, 5/12 were on biologics [adalimumab, infliximab or vedolizumab], 5/12 on immunosuppressants [azathioprine or mercaptopurine], one on 5-ASA and one off-treatment. CONCLUSIONS: A substantial proportion of patients with CLD develop IBD. This suggests the potential involvement of SL26A3-mediated anion transport in IBD pathogenesis. Patients with CLD-associated IBD may require surgery for treatment failure or colon cancer.


Assuntos
Diarreia/congênito , Doenças Inflamatórias Intestinais/epidemiologia , Erros Inatos do Metabolismo/epidemiologia , Adolescente , Adulto , Criança , Antiportadores de Cloreto-Bicarbonato/genética , Estudos de Coortes , Diarreia/epidemiologia , Diarreia/genética , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Erros Inatos do Metabolismo/genética , Mutação , Prevalência , Transportadores de Sulfato/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...